Tuesday, April 19, 2022

Predictive Model: Customer Subsciption(Continue/Discontinue) with Tensorflow

This demo program shows how to use Tensorflow to predict if a customer will continue/discontinue its subscription.

The output:






The Code:


 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import pandas as pd
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense, Flatten
from sklearn.metrics import accuracy_score
from sklearn.metrics import ConfusionMatrixDisplay, classification_report, confusion_matrix
from matplotlib import style
style.use('classic')
df = pd.read_csv('cont_subs.csv')
X = pd.get_dummies(df.drop(['cont_subs', 'Customer ID'], axis=1))
y = df['cont_subs'].apply(lambda x: 1 if x=='Yes' else 0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.15)
X.columns

y_train.head()

model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=len(X_train.columns)))
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='sgd', metrics='accuracy')

model.fit(X_train, y_train, epochs=512, batch_size=32)

y_hat = model.predict(X_test)
y_hat = [0 if val < 0.5 else 1 for val in y_hat]

accuracy_score(y_test, y_hat)

cm = confusion_matrix(y_test, y_hat)
disp = ConfusionMatrixDisplay(confusion_matrix = cm)
disp.plot()

No comments:

Post a Comment